NANO3D SYSTEMS is pleased to be nominated to the 2017 World Materials Forum Start Up Challenge.

NANO3D SYSTEMS is pleased to be nominated to the 2017 World Materials Forum Start Up Challenge. We see this nomination as an opportunity for our eLOCOS(TM) plating technology to be part of WMF’s mission to achieve the objective of materials efficiency for better growth with materials/IOT industry leaders throughout the world. World Materials Forum (WMF) was held on June 29 – 30th in Nancy, France. This year forum includes about 260 invited C–suite participants in materials / IOT companies throughout the world. It’s different than conventional industry forums – only thought leaders and company executives across industries driving new technologies for sustainability. This leads to a fascinating network and information flow.

WMF asked Nano3D Systems’ president Val Dubin to describe Nano3D’s breakthrough technology and its contribution to the WMF Overall Objective of “Material Efficiency for Better Growth.” Dr. Dubin’s response was:

“NANO3D provides revolutionary eLOCOS metallization technology for advanced 3D devices. NANO3D addresses $15.3B metal plating market opportunity that needs advanced plating technology to decrease the interconnect feature sizes and increase the power density for next generation consumer and power electronic devices.

NANO3D’s patented eLOCOS plating technology is based on novel materials and enables: a) drastically increase the interconnect density by selectively plating ultra-small features of high aspect ratios to reduce the form factor, and b) fabricate controlled expansion interconnects by plating alloys with unique properties to eliminate CTE mismatch between buildup materials.

We partner with major plating tool suppliers and R&D consortiums to qualify NANO3D’s process technology and plating chemicals, and then scale up the production of materials through toll manufacturing and licensing to established chemical companies.

NANO3D additive metallization technology drastically reduces the usage of copper and polishing slurry to fabricate multichip interconnects to enable small form factor, affordable and reliable 3D microsystems. “