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Outline 
l Cu Damascene Process  
l Cu EP mechanism 
l Gap fill mechanism and additives 
l Bath analysis/replenishment 
l Defects and Uniformity 
l Films properties 
l Conclusions 
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Cu Damascene Process vs Al 

PVD Ta/TaN barrier + PVD Cu seed dep + Cu EP 

Cu replaced Al as on-chip metallization due to higher electromigration  
resistance (10x+) and lower resistivity (30%+) as well as cost reduction  
(about 20%) 
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Cu Dual Damascene Process 
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Copper On-Chip Interconnections 
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Cu RC is 30%+ lower than that of Al interconnects 
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Cu Electromigration 

Cu EM resistance is 100x higher  
than that of Al interconnects 
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Cu EP Mechanism 
l  Mechanism at the anode 

    Cu → Cu+ + e-  (fast) 
Cu+ → Cu2+ + e-      (slow) 

 
l  Rate limiting step is oxidation 

of Cu+ to Cu2+ 

l  Accumulation of Cu+ is 
possible and CuCl 
precipitation is likely in 
presence of Cl- 

l  Mechanism at the cathode 
       Cu2+ + e- → Cu+    (slow) 

Cu+ + e- → Cu      (fast) 
 

l  Rate limiting step is  
reduction of Cu2+ to Cu+ 

l  Cu+ does not accumulate 
and CuCl precipitation is 
unlikely in presence of Cl- 
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Cu EP Mechanism: Anode 
Pourbaix diagram for Cu-Cl-H2O system
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• Copper oxides are unstable
under acidic conditions in the
presence of Cl-

• When Cl- is present, Cu(I) can
be stable in the form of a CuCl
film

• Stability of CuCl film is
affected by changes in [Cu+] or
[Cl-] and pH, due to:
– different electrolyte
– different processing conditions

• Cu(I) in CuCl can be oxidized
by dissolved O2

4CuCl + O2(a) + 4OH-  → 4CuO + 4Cl- + 2 H2O ΔG = -83 kcal/mole
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• Solubility product constants (Ksp) of least soluble
copper salts:
CuCl (s)  ↔ Cu+ (aq) + Cl- (aq) Ksp = 1.7•10-7 M2

Cu3(PO4)2 (s) ↔ 3 Cu2+ (aq) + 2 PO4
3- (aq) Ksp = 1.4•10-37 M5

CuSO4 (s)  ↔ Cu2+ (aq) + SO4
2- (aq) Ksp = 2.3 M2

• Cupric sulfate is much more soluble than cuprous
chloride or cupric phosphate

Cu EP Mechanism at the Anode 
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Cu EP Mechanism: Anode 

• Ion Chromatography (IC) and ICP-atomic emission spectroscopy  
of Cu anode films  

Sample IC ICP 
Cl -  ( µ g/ml) SO 4 2-  ( µ g/ml) Cl - /SO 4 2- HPO 4 -  ( µ g/ml) P/Cu 

1 214 4969 1 : 23 N/A 1 : 81 
2 22.8 507 1 : 22 0.99 1 : 72 
3 135 5.5 24 : 1 1.03 1 : 85 

• IC results show Cl/SO4 ratio in all three samples are much higher than  
Cl/SO4 ratio in plating bath (1:1000) 
 →  strong indication of  CuCl in the anodic film 
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Cathodic Polarization 

l Concentration Polarization 
l Activation Polarization 
l Ohmic Polarization 
l Crystallization Polarization 
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Cu EP Mechanism at the Cathode  
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I = V/(Rc+Rb+Ra) 
 
Rc = Cathodic  Resistance 
Rb = Bulk Resistance 
Ra = Anodic Resistance 
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Cathodic Polarization Curve 
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Electrochemical Equations 
l Faraday Law 
   W = ItAw/nF 

l Fick’s Law 
   Ilim = (nFDC)/δ 

l Tafel’s Law 
   I = AExp(Bή) 

l Butler-Volmer Equation 
 High-Field Approximation: i = ioExp[(1-β)ήF/RT) 
 Low-Field Approximation: I = io(Fή/RT) 
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Cu EP Mechanism: Cathode 
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Cu EP Mechanism - Additives 
l  Wetting agent - strong suppressor (SUPP)  

–  converts stationary water boundary layer of uneven thickness into a 
water/P.E. matrix boundary layer on even thickness  

–  Suppress/decrease Cu deposition rate acting with Cl   
–  Examples: polyethers R-O-[CnH2n]-OH  

l  Brightner - anti-suppressor (ASUPP)  
–  negatively charged additives which reduces effect of suppressors and 

facilitate Cu2+ to Cu+ reduction. 
–  Examples: mercapto alkylsulfonic acids 

l  LEVELER - weak suppressor 
–  produces deposits relatively thicker in small recess and relatively 

thinner on the peaks 
–  protonates and adsorbs preferentially near the most negatively charged 

sites of the cathode. 
–  forms complex with Cu and slow down the copper deposition rate  

–  Examples: quaternary polyimines, polyamides  
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Cu EP Mechanism - Additives 

ASUPP ASUPP Cl- 

Cu2+ ASUPP SUPP 

Cu2+ 

Cu1+ Cu1+ 
Cu (cathode) 

SUPP 

l  Model includes: 
– Mass-transport of 

individual species 
–  Interactions among 

additive species on 
cathode surface 

– Consistent multi-
species adsorption - 
desorption kinetics 
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Effect of Additive on 
Polarization Resistance 

l Suppressor – No effect on polarization 
resistance 

l Suppressor + Chloride – Increase 
polarization resistance 

l Accelerator + Suppressor + Chloride – 
Decrease of the polarization 
resistance 
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Tafel Plots 
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“Superfill” Cu EP mechanism 
Cu2+ + e = Cu+ (slow) 
Cu+ + e = Cu (fast) 
SPS2- + e = 2MPS- (ASUPP-mercaptopropansulfonate) 
MPS Diffusion gradient formed in features 
MPS adsorbed on Cu surface 
Cu(I)MPS complex accelerate plating - “superfill” 
PEG & Cl complex suppress deposition at top openings 
and flat surface to produce leveling 

MPS 

MPS 

PEG 

Partial fill 

Complete Fill 

PEG PEG 
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Mechanism of ‘BottomMechanism of ‘Bottom--up’ Fillup’ Fill
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ll Factors that impact BottomFactors that impact Bottom--up Fill rateup Fill rate
–– Additives (Suppressors, Levelers)Additives (Suppressors, Levelers)
–– Plating current density (plating rate)Plating current density (plating rate)
–– FeatureFeature--scale diffusion boundary layer (agitation)scale diffusion boundary layer (agitation)

Ref. T. P. Moffat et al.,  Electrochem. Solid-State Lett., 4, C26 (2001) 
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Summary of Superfill Mechanism 
Additives MW Diffusion Rate Adsorption 

Rate 
Displacement 

Accelerator  
(S-R) 

Small Fast Slow By Leveler on 
“Humps” 

Suppressor (R-
O) + Cl 

High Slow Fast By Accelerator 
on the bottom 
of features 

Leveler (N-R) High Slow Need High E 

Mechanisms: 
- Gradient of additives in the features due to delta in diffusion vs  
adsorption rate 
- Curvature enhanced mechanism (increase of accelerator concentration 
due to curvature) 
- Complexing of accelerator with Cu+ (facilitate rate limiting reaction);  
- Complexing of leveler with Cu2+ (make it rate limiting reaction) 
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LSV in Cu Plating Bath 

ASUPP in the Bath 
(no hysteresis on LSV) 

ASUPP and SUPP in the Bath 
(hysteresis on LSV) 
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Galvanostatic Cu deposition 
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Galvanostatic Cu deposition 
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Integrated Electroplating Modeling 
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Decreasing [SUPP] 

l   Shape-evolution model, based on boundary-element method (BEM),  
     was used to study gap-fill properties 
l   Simulation results show that conformal deposition with seam  
     formation has been observed at high suppression level and center 
     voids have been found at low suppression level    
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Demonstration of “Super-
Fill” 

Dep time - T1 Dep time - T2 (T2>T1) 

Dep time - T3 (T3>T2) Dep time - T4 (T4>T1) 
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Gap Fill and Cu EP Superfill 

   110    nm    trench fill   
profile every 10 s   

Figure 5.  Shape evolution modeling and gap fill capability   

Demonstration of    
110    nm    trench gap fill   

57nm   

Sub 100 nm Via Fill 

Demonstration of complete gap fill of sub 100 nm trenches and vias 
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Demonstration of EP fill 
capability  

0.07 µm 
46 46 51nm 
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Process Window – Cl 
concentration 
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1.  Fill has lower bottom up fill rate with no (little( chloride in the bath) 
2.  Superfill is accelerated at 30 – 100 ppm of Cl in the bath 
3.  Excess Cl degrade fill and increase Cl level in the film 
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Process Window – Accelerator 
Concentration 

Accelerator (ppm) 
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1.  Bottom up fill rate is low with No (little) accelerator in the bath 
2.  Superfill is accelerated at 5 – 100 ppm of accelerator in the bath 
3.  Excess accelerator degrades fill and increase S level in the film 
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Process Window – Suppressor 
Concentration 
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1.  Bottom up fill rate is low with No (little) suppressor/Cl in the 
bath 

2.  Suppression reaches saturation at 50 – 200 ppm level of 
suppressor 

3.  Very high suppressor does not degrade fill (except causing 
TOC increase and bath foaming) 
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Process Window – Leveler 
Concentration 
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1.  Optimized leveler concentration increases fill due to 
additional suppression 

2.  Very high leveler concentration degrade superfill 
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Process Window – Cupric 
Concentration 

Cupric (g/l) 
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1.  Low cupric ion concentration (<10 g/l) degrade fill (diffusion 
limitation) 

2.  High cupric ion concentration can cause Cu crystals build 
up (>80 g/l) 
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Process Window – Acid 
Concentration 

Acid (g/l) 
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1.  Acid (sulfuric) does not degrade fill at 10 – 250 g/l 

2.  Low acid improves within wafer uniformity 
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Electrochemical activity 
(CVS) of Cu EP Additives 
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Electrochemical activity 
(CVS) of Cu EP Additives 

A - Brightner (ASUPP), B - SUPP (wetting agent),  
C – Leveler (LEV) 

Response in VMS + Suppressor
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On-line bath metrology/replenishment 
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Cu Film Properties - Cont   
• Ea for PVD CuPd(0.5%) - 1.01 eV, CuPd(1%) - 1.26 eV, for
PVD CuSn(0.5%) - 0.95eV, CuSn(0.5%) -1.25eV; Ea for grain 
boundary diffusion in PVD Cu is 0.8-0.92 eV ([11] D. Gupta, MRS 
proceed., 337, 1994, [22] K.L. Lee, C.-K. Hu et al. Appl. Phys., 78, (1995) 4428)

• PVD Cu (111) crystallographic orientation is enhanced on
on TiN film with strong TiN (111) orientation. Superior EM
performance was observed in Cu with a strong (111) 
orientation (about one order of magnitude longer MTTF than 
that for Cu with  random texture) ([12] K.Abe et al. “Cu metal line
crystallographic texture control and its electromigration performance as damascene
interconnects”, VLSI symp, 1997)

• Cu line exhibiting an overall stronge (111) texture showed 
better resistance to stress-induced void formation in Ta-
encapsulated Cu interconnects ([13] J.A. Nucci et al., Appl. Phys. Lett.,
69 (26), 1996, 4017)
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Cu Film Properties  
•Annealed electroplated Cu film deposited on PVD Ta/Cu 
exhibit strong (111) texture (4% random, tilting angle 2.57); 
plated lines formed in sub-micron trecnhes also exhibit strong

(111) texture (about 5-9% random, tilting angle about 2-4) 
([14] V.M. Dubin et al. “Microstructure and mechanical properties of electroplated
Cu films for damascene ULSI metallization”. 1997 Fall MRS meeting)

• Plated Cu grains in trenches are quite large. One or two grains
fill the entire trench (due to secondary grain growth driving by
stress release); Plated Cu: mean grain - 1.1 um, sigma - 0.45 [14]

•The agglomeration of Cu appears when the wetting
characteristics of barrier is poor. The wetting characteristics of
barrier layer for Cu is in the following order APT(Ar plasma 
treated)-TiN>APT TiW>TiW>>TiN; the intensity of Cu (111)
peak is in the following order: APT TiN>TiN>TiW>APT-TiW
([15] S. Hirao et al. 1997 VLSI Symp.)
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MB/ Cu void defects 
l  Cu voids (pin holes) defects due to MB and gap fill issues 

have been reduced/eliminated by using CuEP chemistry 
which provide 

–  uniform Cu nucleation due to high suppression and low 
sensitivity to b/s surface contaminants 

–  superior gap fill due to higher concentration of ASUPP and 
stronger suppressors being used 

C C C 

Substrate 
Seed 

Suppressor 

Contaminants 

Suppression of contaminants 

Suppression 

Acceleration 
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Uniformity 
 
•  Within Wafer Non-Uniformity (WIWNU) -  about 2%, 1 Sigma 
 
•  Within Die Non-Uniformity (WIDNU) - step height over  
dense features (<1000A) 
 
 

A 

B 

WID metrics: A-B 
“Superfill” step height 
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“Bottom-up growth” and “Overfill phenomenon” 

Uniformity – Role of Additives 

Bottom-up growth Overfill phenomenon 

Suppression of  “overfill phenomenon” 
Without JGB With JGB 

- Disadvantageous for CMP 

Preferential Cu growth Formation of Cu bumps 

Cl-, PEG, SPS 

JGB 

- Superfilling 
upward from the bottom above Cu-filled trenches 
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Plating cell 

Contacts 

Membrane Anode 

Clam Shell 

Wafer Diffuser 
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Integrated Electroplating Modeling 
Additive Concentration Profile 
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l  Wafer-scale tertiary current distribution model, based on finite-element 
method (FEM), was used to optimize flow field and concentration variations 

Fluid flow simulation 
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Terminal Effect 

Wafer seed 

R seed 

R
 electrolyte 

V 

I = V/(R seed + R electrolyte) 

High R electrolyte (low acid) 
will dominate and mitigate 
increase in R seed due to  
thin seed (i.e. provide low 
WIWNU) 
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Cu Film Microstructure vs Dep. 
Conditions 

Winand’s diagram: high current 
density study (70s)  

l  Deposit structure as a function 
of current density and 
inhibition strength 

Limitations: 
l  Inhibition/Additives is not 

quantified 
l  Structure classification not 

clear 
l  Diagram designed for thick 

films (>30µm) 
l  Impact of substrate missing 

FI Field Oriented Crystals
BR Basis Reproduction
FT Field Oriented Texture (2D nucleation)
UD Unoriented Dispersion (3D nucleation)

FI Field Oriented Crystals
BR Basis Reproduction
FT Field Oriented Texture (2D nucleation)
UD Unoriented Dispersion (3D nucleation)
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Plated Cu Film Microstructure 
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l  A new approach based on extension of Winand diagram to 3D was done to 
investigate grain size distribution  

–  More textured substrates lead to more nucleation sites 
–  Higher current densities lead to higher nucleation rate 
–  Higher additive levels reduce grain growth 
–   these effects led to smaller grain sizes 
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Plated Cu Film Microstructure 

36 and 60 degree mis-orientation grain boundaries  
correspond to twin grain boundaries in copper  

(111) - strong texture 
(200), (220) and (311) - small 
but measurable components 
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Cu Texture 
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Cu Texture Evolution 
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Cu Grain Size 
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Electroplated Cu surface 
roughness 

AFM surface roughness is in the range of RMS 5-6 nm (1 µm thick film) 



G-Number 63 

Electroplated Cu Film Composition 

l      Incorporation of S is proportional to ASUPP  
l      C inclusion in the deposits increases w/ TOC level in the bath 
l      Incorporation of trace impurities in the film depends  
       on the electrolyte being used 
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Electroplated Cu Film 
Composition 

Trace impurities are distributed on the grain boundaries 
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After 3 days 
After 7 days 

（Cl－：50 ppm，PEG：100 ppm，SPS：10 ppm，JGB：10 ppm）	

Variation of Cu Films with Time 
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111 200 

Cu(111) 
Source: 
Prof. Osaka 
Waseda U. 
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Variation of resistivity on time 

（Cl－：50 ppm，PEG：100 ppm，SPS：10 ppm，JGB：10 ppm）	
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Source: 
Prof. Osaka 
Waseda U. 



G-Number 67 

Cu Resistivity Scaling 
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In Summary 
l  A chemical mechanism for Cu electroplating is proposed 

– bottom up fill in trenches/vias is explained by 
accumulation of ACCELERATOR (ASUPP) at the 
bottom of features which reduces effect of 
SUPPRESSOR (SUPP) 

l  Electrochemical methods (CVS and LSV) were reviewed 
to study additives 

l  Bath stability can be maintained by using 
– auto-replenishment of plating bath ingredients with 

on-line bath analysis with p/t <0.3 
l  Defects and Uniformity can be reduced by using 

additives and optimizing plating reactor 
l  Electroplating conditions can be optimized to achieve  

– (111) textured Cu films with large grain size, 
significant fraction of twin grain boundaries, and 
controlled impurities content 


